Age- and gender-related changes in the normal human brain using hybrid diffusion imaging (HYDI)

نویسندگان

  • Yu-Chien Wu
  • Aaron S. Field
  • Paul J. Whalen
  • Andrew L. Alexander
چکیده

Diffusion tensor imaging has been widely used to study brain diseases, disorders, development, and aging. However, few studies have explored the effects of aging on diffusion imaging measures with higher b values. Further, the water diffusion in biological tissues appears biexponential, although this also has not been explored with aging. In this study, hybrid diffusion imaging (HYDI) was used to study 52 healthy subjects with an age range from 18 to 72 years. The HYDI diffusion-encoding scheme consisted of five concentric q-space shells with b values ranging from 0 to 9375 s/mm(2). Quantitative diffusion measures were investigated as a function of age and gender using both region-of-interest (whole-brain white matter, genu and splenium of corpus callosum, posterior limb of the internal capsule) and whole-brain voxel-based analyses. Diffusion measures included measures of the diffusion probability density function (zero displacement probability and mean-squared displacement), biexponential diffusion (i.e., volume fractions of fast/slow diffusion compartments and fast/slow diffusivities), and DTI measures (fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity). The biexponential volume fraction, the fast diffusivity, and the axial diffusivity measures (f(1), D(1), and D(a)) were found to be more sensitive to normal aging than the restricted, slow and radial diffusion measures (P(0), D(2), and D(r)). The biexponential volume fraction, f(1), showed the most widespread age dependence in the voxel-based analyses, although both FA and mean diffusivity did show changes in frontal white matter regions that may be associated with age-related decline.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data of NODDI diffusion metrics in the brain and computer simulation of hybrid diffusion imaging (HYDI) acquisition scheme

This article provides NODDI diffusion metrics in the brains of 52 healthy participants and computer simulation data to support compatibility of hybrid diffusion imaging (HYDI), "Hybrid diffusion imaging"[1] acquisition scheme in fitting neurite orientation dispersion and density imaging (NODDI) model, "NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brai...

متن کامل

Age effects and sex differences in human brain white matter of young to middle-aged adults: A DTI, NODDI, and q-space study

Microstructural changes in human brain white matter of young to middle-aged adults were studied using advanced diffusion Magnetic Resonance Imaging (dMRI). Multiple shell diffusion-weighted data were acquired using the Hybrid Diffusion Imaging (HYDI). The HYDI method is extremely versatile and data were analyzed using Diffusion Tensor Imaging (DTI), Neurite Orientation Dispersion and Density Im...

متن کامل

Reconstruction of major fibers using 7T multi-shell Hybrid Diffusion Imaging in mice

Diffusion weighted imaging (DWI) can reveal the orientation of the underlying fiber populations in the brain. High angular resolution diffusion imaging (HARDI) is increasingly used to better resolve the orientation and mixing of fibers. Here, we assessed the added value of multi-shell q-space sampling on the reconstruction of major fibers using mathematical frameworks from q-ball imaging (QBI) ...

متن کامل

Multi-Shell Hybrid Diffusion Imaging (HYDI) at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats.

Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusi...

متن کامل

Hybrid diffusion imaging.

Diffusion measurements in the human central nervous system are complex to characterize and a broad spectrum of methods have been proposed. In this study, a comprehensive diffusion encoding and analysis approach, hybrid diffusion imaging (HYDI), is described. The HYDI encoding scheme is composed of multiple concentric "shells" of constant diffusion weighting, which may be used to characterize th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 54 3  شماره 

صفحات  -

تاریخ انتشار 2011